MakeItFrom.com
Menu (ESC)

EN 1.4557 Stainless Steel vs. 384.0 Aluminum

EN 1.4557 stainless steel belongs to the iron alloys classification, while 384.0 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4557 stainless steel and the bottom bar is 384.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
85
Elastic (Young's, Tensile) Modulus, GPa 200
74
Elongation at Break, % 40
2.5
Fatigue Strength, MPa 260
140
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 80
28
Tensile Strength: Ultimate (UTS), MPa 560
330
Tensile Strength: Yield (Proof), MPa 300
170

Thermal Properties

Latent Heat of Fusion, J/g 300
550
Maximum Temperature: Mechanical, °C 1090
170
Melting Completion (Liquidus), °C 1460
580
Melting Onset (Solidus), °C 1420
530
Specific Heat Capacity, J/kg-K 460
870
Thermal Conductivity, W/m-K 15
96
Thermal Expansion, µm/m-K 17
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
22
Electrical Conductivity: Equal Weight (Specific), % IACS 2.2
69

Otherwise Unclassified Properties

Base Metal Price, % relative 29
11
Density, g/cm3 8.0
2.9
Embodied Carbon, kg CO2/kg material 5.6
7.4
Embodied Energy, MJ/kg 76
140
Embodied Water, L/kg 190
1010

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
6.9
Resilience: Unit (Modulus of Resilience), kJ/m3 210
190
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
49
Strength to Weight: Axial, points 19
32
Strength to Weight: Bending, points 19
37
Thermal Diffusivity, mm2/s 4.0
39
Thermal Shock Resistance, points 12
15

Alloy Composition

Aluminum (Al), % 0
77.3 to 86.5
Carbon (C), % 0 to 0.020
0
Chromium (Cr), % 19.5 to 20.5
0
Copper (Cu), % 0.5 to 1.0
3.0 to 4.5
Iron (Fe), % 49.5 to 56.3
0 to 1.3
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0 to 1.2
0 to 0.5
Molybdenum (Mo), % 6.0 to 7.0
0
Nickel (Ni), % 17.5 to 19.5
0 to 0.5
Nitrogen (N), % 0.18 to 0.24
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.0
10.5 to 12
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0 to 0.35
Zinc (Zn), % 0
0 to 3.0
Residuals, % 0
0 to 0.5