MakeItFrom.com
Menu (ESC)

EN 1.4557 Stainless Steel vs. S43932 Stainless Steel

Both EN 1.4557 stainless steel and S43932 stainless steel are iron alloys. They have 72% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.4557 stainless steel and the bottom bar is S43932 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
160
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 40
25
Fatigue Strength, MPa 260
160
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 80
77
Tensile Strength: Ultimate (UTS), MPa 560
460
Tensile Strength: Yield (Proof), MPa 300
230

Thermal Properties

Latent Heat of Fusion, J/g 300
280
Maximum Temperature: Corrosion, °C 420
570
Maximum Temperature: Mechanical, °C 1090
890
Melting Completion (Liquidus), °C 1460
1440
Melting Onset (Solidus), °C 1420
1400
Specific Heat Capacity, J/kg-K 460
480
Thermal Conductivity, W/m-K 15
23
Thermal Expansion, µm/m-K 17
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.2
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 29
12
Density, g/cm3 8.0
7.7
Embodied Carbon, kg CO2/kg material 5.6
2.7
Embodied Energy, MJ/kg 76
40
Embodied Water, L/kg 190
120

Common Calculations

PREN (Pitting Resistance) 45
18
Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
96
Resilience: Unit (Modulus of Resilience), kJ/m3 210
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 19
17
Strength to Weight: Bending, points 19
17
Thermal Diffusivity, mm2/s 4.0
6.3
Thermal Shock Resistance, points 12
16

Alloy Composition

Aluminum (Al), % 0
0 to 0.15
Carbon (C), % 0 to 0.020
0 to 0.030
Chromium (Cr), % 19.5 to 20.5
17 to 19
Copper (Cu), % 0.5 to 1.0
0
Iron (Fe), % 49.5 to 56.3
76.7 to 83
Manganese (Mn), % 0 to 1.2
0 to 1.0
Molybdenum (Mo), % 6.0 to 7.0
0
Nickel (Ni), % 17.5 to 19.5
0 to 0.5
Niobium (Nb), % 0
0.2 to 0.75
Nitrogen (N), % 0.18 to 0.24
0 to 0.030
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.010
0 to 0.030
Titanium (Ti), % 0
0.2 to 0.75