MakeItFrom.com
Menu (ESC)

EN 1.4558 Stainless Steel vs. EN 1.4319 Stainless Steel

Both EN 1.4558 stainless steel and EN 1.4319 stainless steel are iron alloys. Both are furnished in the solution annealed (AT) condition. They have 68% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.4558 stainless steel and the bottom bar is EN 1.4319 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 39
51
Fatigue Strength, MPa 170
240
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
77
Shear Strength, MPa 350
460
Tensile Strength: Ultimate (UTS), MPa 510
640
Tensile Strength: Yield (Proof), MPa 200
250

Thermal Properties

Latent Heat of Fusion, J/g 300
280
Maximum Temperature: Corrosion, °C 480
410
Maximum Temperature: Mechanical, °C 1100
890
Melting Completion (Liquidus), °C 1400
1430
Melting Onset (Solidus), °C 1350
1390
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 12
15
Thermal Expansion, µm/m-K 16
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 31
13
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 5.5
2.7
Embodied Energy, MJ/kg 77
39
Embodied Water, L/kg 200
130

Common Calculations

PREN (Pitting Resistance) 22
18
Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
260
Resilience: Unit (Modulus of Resilience), kJ/m3 100
160
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 18
23
Strength to Weight: Bending, points 18
21
Thermal Diffusivity, mm2/s 3.1
4.0
Thermal Shock Resistance, points 12
14

Alloy Composition

Aluminum (Al), % 0.15 to 0.45
0
Carbon (C), % 0 to 0.030
0 to 0.070
Chromium (Cr), % 20 to 23
16 to 18
Iron (Fe), % 39.2 to 47.9
70.8 to 78
Manganese (Mn), % 0 to 1.0
0 to 2.0
Nickel (Ni), % 32 to 35
6.0 to 8.0
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0 to 0.020
0 to 0.045
Silicon (Si), % 0 to 0.7
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.030
Titanium (Ti), % 0 to 0.6
0