MakeItFrom.com
Menu (ESC)

EN 1.4558 Stainless Steel vs. C95300 Bronze

EN 1.4558 stainless steel belongs to the iron alloys classification, while C95300 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4558 stainless steel and the bottom bar is C95300 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 39
14 to 25
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
42
Tensile Strength: Ultimate (UTS), MPa 510
520 to 610
Tensile Strength: Yield (Proof), MPa 200
190 to 310

Thermal Properties

Latent Heat of Fusion, J/g 300
230
Maximum Temperature: Mechanical, °C 1100
220
Melting Completion (Liquidus), °C 1400
1050
Melting Onset (Solidus), °C 1350
1040
Specific Heat Capacity, J/kg-K 480
440
Thermal Conductivity, W/m-K 12
63
Thermal Expansion, µm/m-K 16
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
13
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
14

Otherwise Unclassified Properties

Base Metal Price, % relative 31
28
Density, g/cm3 8.0
8.3
Embodied Carbon, kg CO2/kg material 5.5
3.1
Embodied Energy, MJ/kg 77
52
Embodied Water, L/kg 200
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
73 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 100
170 to 420
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 18
17 to 21
Strength to Weight: Bending, points 18
17 to 19
Thermal Diffusivity, mm2/s 3.1
17
Thermal Shock Resistance, points 12
19 to 22

Alloy Composition

Aluminum (Al), % 0.15 to 0.45
9.0 to 11
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 20 to 23
0
Copper (Cu), % 0
86.5 to 90.2
Iron (Fe), % 39.2 to 47.9
0.8 to 1.5
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 32 to 35
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.7
0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0 to 0.6
0
Residuals, % 0
0 to 1.0