MakeItFrom.com
Menu (ESC)

EN 1.4558 Stainless Steel vs. S20433 Stainless Steel

Both EN 1.4558 stainless steel and S20433 stainless steel are iron alloys. They have 66% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.4558 stainless steel and the bottom bar is S20433 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 39
46
Fatigue Strength, MPa 170
250
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
76
Shear Strength, MPa 350
440
Tensile Strength: Ultimate (UTS), MPa 510
630
Tensile Strength: Yield (Proof), MPa 200
270

Thermal Properties

Latent Heat of Fusion, J/g 300
280
Maximum Temperature: Corrosion, °C 480
410
Maximum Temperature: Mechanical, °C 1100
900
Melting Completion (Liquidus), °C 1400
1400
Melting Onset (Solidus), °C 1350
1360
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 12
15
Thermal Expansion, µm/m-K 16
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 31
13
Density, g/cm3 8.0
7.7
Embodied Carbon, kg CO2/kg material 5.5
2.7
Embodied Energy, MJ/kg 77
39
Embodied Water, L/kg 200
150

Common Calculations

PREN (Pitting Resistance) 22
20
Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
230
Resilience: Unit (Modulus of Resilience), kJ/m3 100
180
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 18
23
Strength to Weight: Bending, points 18
21
Thermal Diffusivity, mm2/s 3.1
4.0
Thermal Shock Resistance, points 12
14

Alloy Composition

Aluminum (Al), % 0.15 to 0.45
0
Carbon (C), % 0 to 0.030
0 to 0.080
Chromium (Cr), % 20 to 23
17 to 18
Copper (Cu), % 0
1.5 to 3.5
Iron (Fe), % 39.2 to 47.9
64.1 to 72.4
Manganese (Mn), % 0 to 1.0
5.5 to 7.5
Nickel (Ni), % 32 to 35
3.5 to 5.5
Nitrogen (N), % 0
0.1 to 0.25
Phosphorus (P), % 0 to 0.020
0 to 0.045
Silicon (Si), % 0 to 0.7
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.030
Titanium (Ti), % 0 to 0.6
0