MakeItFrom.com
Menu (ESC)

EN 1.4558 Stainless Steel vs. S32906 Stainless Steel

Both EN 1.4558 stainless steel and S32906 stainless steel are iron alloys. They have 72% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.4558 stainless steel and the bottom bar is S32906 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
210
Elongation at Break, % 39
28
Fatigue Strength, MPa 170
460
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 77
81
Shear Strength, MPa 350
550
Tensile Strength: Ultimate (UTS), MPa 510
850
Tensile Strength: Yield (Proof), MPa 200
620

Thermal Properties

Latent Heat of Fusion, J/g 300
300
Maximum Temperature: Corrosion, °C 480
460
Maximum Temperature: Mechanical, °C 1100
1100
Melting Completion (Liquidus), °C 1400
1430
Melting Onset (Solidus), °C 1350
1380
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 12
13
Thermal Expansion, µm/m-K 16
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 31
20
Density, g/cm3 8.0
7.7
Embodied Carbon, kg CO2/kg material 5.5
3.7
Embodied Energy, MJ/kg 77
52
Embodied Water, L/kg 200
190

Common Calculations

PREN (Pitting Resistance) 22
41
Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
220
Resilience: Unit (Modulus of Resilience), kJ/m3 100
950
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 18
30
Strength to Weight: Bending, points 18
26
Thermal Diffusivity, mm2/s 3.1
3.6
Thermal Shock Resistance, points 12
23

Alloy Composition

Aluminum (Al), % 0.15 to 0.45
0
Carbon (C), % 0 to 0.030
0 to 0.030
Chromium (Cr), % 20 to 23
28 to 30
Copper (Cu), % 0
0 to 0.8
Iron (Fe), % 39.2 to 47.9
56.6 to 63.6
Manganese (Mn), % 0 to 1.0
0.8 to 1.5
Molybdenum (Mo), % 0
1.5 to 2.6
Nickel (Ni), % 32 to 35
5.8 to 7.5
Nitrogen (N), % 0
0.3 to 0.4
Phosphorus (P), % 0 to 0.020
0 to 0.030
Silicon (Si), % 0 to 0.7
0 to 0.5
Sulfur (S), % 0 to 0.015
0 to 0.030
Titanium (Ti), % 0 to 0.6
0