MakeItFrom.com
Menu (ESC)

EN 1.4565 Stainless Steel vs. ASTM A229 Spring Steel

Both EN 1.4565 stainless steel and ASTM A229 spring steel are iron alloys. They have 47% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4565 stainless steel and the bottom bar is ASTM A229 spring steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
190
Elongation at Break, % 35
14
Fatigue Strength, MPa 380
710 to 790
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 81
72
Shear Strength, MPa 590
1020 to 1140
Tensile Strength: Ultimate (UTS), MPa 880
1690 to 1890
Tensile Strength: Yield (Proof), MPa 480
1100 to 1230

Thermal Properties

Latent Heat of Fusion, J/g 310
250
Maximum Temperature: Mechanical, °C 1100
400
Melting Completion (Liquidus), °C 1420
1450
Melting Onset (Solidus), °C 1380
1410
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 12
50
Thermal Expansion, µm/m-K 15
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 28
1.8
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 5.4
1.4
Embodied Energy, MJ/kg 74
19
Embodied Water, L/kg 210
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 260
200 to 230
Resilience: Unit (Modulus of Resilience), kJ/m3 550
3260 to 4080
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 31
60 to 67
Strength to Weight: Bending, points 26
40 to 43
Thermal Diffusivity, mm2/s 3.2
14
Thermal Shock Resistance, points 21
54 to 60

Alloy Composition

Carbon (C), % 0 to 0.030
0.55 to 0.85
Chromium (Cr), % 24 to 26
0
Iron (Fe), % 41.2 to 50.7
97.5 to 99
Manganese (Mn), % 5.0 to 7.0
0.3 to 1.2
Molybdenum (Mo), % 4.0 to 5.0
0
Nickel (Ni), % 16 to 19
0
Niobium (Nb), % 0 to 0.15
0
Nitrogen (N), % 0.3 to 0.6
0
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 0 to 1.0
0.15 to 0.35
Sulfur (S), % 0 to 0.015
0 to 0.050