MakeItFrom.com
Menu (ESC)

EN 1.4565 Stainless Steel vs. C43400 Brass

EN 1.4565 stainless steel belongs to the iron alloys classification, while C43400 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.4565 stainless steel and the bottom bar is C43400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
110
Elongation at Break, % 35
3.0 to 49
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 81
42
Shear Strength, MPa 590
250 to 390
Tensile Strength: Ultimate (UTS), MPa 880
310 to 690
Tensile Strength: Yield (Proof), MPa 480
110 to 560

Thermal Properties

Latent Heat of Fusion, J/g 310
190
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1420
1020
Melting Onset (Solidus), °C 1380
990
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 12
140
Thermal Expansion, µm/m-K 15
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
31
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
32

Otherwise Unclassified Properties

Base Metal Price, % relative 28
28
Density, g/cm3 7.9
8.6
Embodied Carbon, kg CO2/kg material 5.4
2.7
Embodied Energy, MJ/kg 74
44
Embodied Water, L/kg 210
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 260
19 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 550
57 to 1420
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 31
10 to 22
Strength to Weight: Bending, points 26
12 to 20
Thermal Diffusivity, mm2/s 3.2
41
Thermal Shock Resistance, points 21
11 to 24

Alloy Composition

Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 24 to 26
0
Copper (Cu), % 0
84 to 87
Iron (Fe), % 41.2 to 50.7
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 5.0 to 7.0
0
Molybdenum (Mo), % 4.0 to 5.0
0
Nickel (Ni), % 16 to 19
0
Niobium (Nb), % 0 to 0.15
0
Nitrogen (N), % 0.3 to 0.6
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0.4 to 1.0
Zinc (Zn), % 0
11.4 to 15.6
Residuals, % 0
0 to 0.5