MakeItFrom.com
Menu (ESC)

EN 1.4565 Stainless Steel vs. C70260 Copper

EN 1.4565 stainless steel belongs to the iron alloys classification, while C70260 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4565 stainless steel and the bottom bar is C70260 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
120
Elongation at Break, % 35
9.5 to 19
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 81
44
Shear Strength, MPa 590
320 to 450
Tensile Strength: Ultimate (UTS), MPa 880
520 to 760
Tensile Strength: Yield (Proof), MPa 480
410 to 650

Thermal Properties

Latent Heat of Fusion, J/g 310
220
Maximum Temperature: Mechanical, °C 1100
200
Melting Completion (Liquidus), °C 1420
1060
Melting Onset (Solidus), °C 1380
1040
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 12
160
Thermal Expansion, µm/m-K 15
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
40 to 50
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
40 to 51

Otherwise Unclassified Properties

Base Metal Price, % relative 28
31
Density, g/cm3 7.9
8.9
Embodied Carbon, kg CO2/kg material 5.4
2.7
Embodied Energy, MJ/kg 74
43
Embodied Water, L/kg 210
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 260
46 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 550
710 to 1810
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 31
16 to 24
Strength to Weight: Bending, points 26
16 to 21
Thermal Diffusivity, mm2/s 3.2
45
Thermal Shock Resistance, points 21
18 to 27

Alloy Composition

Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 24 to 26
0
Copper (Cu), % 0
95.8 to 98.8
Iron (Fe), % 41.2 to 50.7
0
Manganese (Mn), % 5.0 to 7.0
0
Molybdenum (Mo), % 4.0 to 5.0
0
Nickel (Ni), % 16 to 19
1.0 to 3.0
Niobium (Nb), % 0 to 0.15
0
Nitrogen (N), % 0.3 to 0.6
0
Phosphorus (P), % 0 to 0.030
0 to 0.010
Silicon (Si), % 0 to 1.0
0.2 to 0.7
Sulfur (S), % 0 to 0.015
0
Residuals, % 0
0 to 0.5