MakeItFrom.com
Menu (ESC)

EN 1.4565 Stainless Steel vs. S32760 Stainless Steel

Both EN 1.4565 stainless steel and S32760 stainless steel are iron alloys. They have 83% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4565 stainless steel and the bottom bar is S32760 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
200
Elongation at Break, % 35
28
Fatigue Strength, MPa 380
450
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 81
80
Shear Strength, MPa 590
550
Tensile Strength: Ultimate (UTS), MPa 880
850
Tensile Strength: Yield (Proof), MPa 480
620

Thermal Properties

Latent Heat of Fusion, J/g 310
300
Maximum Temperature: Corrosion, °C 460
450
Maximum Temperature: Mechanical, °C 1100
1100
Melting Completion (Liquidus), °C 1420
1460
Melting Onset (Solidus), °C 1380
1410
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 12
15
Thermal Expansion, µm/m-K 15
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 28
22
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 5.4
4.1
Embodied Energy, MJ/kg 74
57
Embodied Water, L/kg 210
180

Common Calculations

PREN (Pitting Resistance) 47
42
Resilience: Ultimate (Unit Rupture Work), MJ/m3 260
220
Resilience: Unit (Modulus of Resilience), kJ/m3 550
930
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 31
30
Strength to Weight: Bending, points 26
25
Thermal Diffusivity, mm2/s 3.2
4.0
Thermal Shock Resistance, points 21
23

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.030
Chromium (Cr), % 24 to 26
24 to 26
Copper (Cu), % 0
0.5 to 1.0
Iron (Fe), % 41.2 to 50.7
57.6 to 65.8
Manganese (Mn), % 5.0 to 7.0
0 to 1.0
Molybdenum (Mo), % 4.0 to 5.0
3.0 to 4.0
Nickel (Ni), % 16 to 19
6.0 to 8.0
Niobium (Nb), % 0 to 0.15
0
Nitrogen (N), % 0.3 to 0.6
0.2 to 0.3
Phosphorus (P), % 0 to 0.030
0 to 0.030
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.010
Tungsten (W), % 0
0.5 to 1.0