MakeItFrom.com
Menu (ESC)

EN 1.4567 Stainless Steel vs. EN 1.4901 Stainless Steel

Both EN 1.4567 stainless steel and EN 1.4901 stainless steel are iron alloys. They have 77% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.4567 stainless steel and the bottom bar is EN 1.4901 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 22 to 51
19
Fatigue Strength, MPa 190 to 260
310
Impact Strength: V-Notched Charpy, J 91 to 110
38
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
76
Shear Strength, MPa 390 to 490
460
Tensile Strength: Ultimate (UTS), MPa 550 to 780
740
Tensile Strength: Yield (Proof), MPa 200 to 390
490

Thermal Properties

Latent Heat of Fusion, J/g 290
260
Maximum Temperature: Corrosion, °C 420
380
Maximum Temperature: Mechanical, °C 930
650
Melting Completion (Liquidus), °C 1410
1490
Melting Onset (Solidus), °C 1370
1450
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 11
26
Thermal Expansion, µm/m-K 17
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
8.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
9.3

Otherwise Unclassified Properties

Base Metal Price, % relative 16
11
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 3.1
2.8
Embodied Energy, MJ/kg 43
40
Embodied Water, L/kg 150
89

Common Calculations

PREN (Pitting Resistance) 19
14
Resilience: Ultimate (Unit Rupture Work), MJ/m3 150 to 220
120
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 400
620
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 19 to 27
26
Strength to Weight: Bending, points 19 to 24
23
Thermal Diffusivity, mm2/s 3.0
6.9
Thermal Shock Resistance, points 12 to 17
23

Alloy Composition

Aluminum (Al), % 0
0 to 0.020
Boron (B), % 0
0.0010 to 0.0060
Carbon (C), % 0 to 0.040
0.070 to 0.13
Chromium (Cr), % 17 to 19
8.5 to 9.5
Copper (Cu), % 3.0 to 4.0
0
Iron (Fe), % 63.3 to 71.5
85.8 to 89.1
Manganese (Mn), % 0 to 2.0
0.3 to 0.6
Molybdenum (Mo), % 0
0.3 to 0.6
Nickel (Ni), % 8.5 to 10.5
0 to 0.4
Niobium (Nb), % 0
0.040 to 0.090
Nitrogen (N), % 0 to 0.1
0.030 to 0.070
Phosphorus (P), % 0 to 0.045
0 to 0.020
Silicon (Si), % 0 to 1.0
0 to 0.5
Sulfur (S), % 0 to 0.015
0 to 0.010
Titanium (Ti), % 0
0 to 0.010
Tungsten (W), % 0
1.5 to 2.0
Vanadium (V), % 0
0.15 to 0.25
Zirconium (Zr), % 0
0 to 0.010