MakeItFrom.com
Menu (ESC)

EN 1.4567 Stainless Steel vs. C48200 Brass

EN 1.4567 stainless steel belongs to the iron alloys classification, while C48200 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4567 stainless steel and the bottom bar is C48200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 22 to 51
15 to 40
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 76
40
Shear Strength, MPa 390 to 490
260 to 300
Tensile Strength: Ultimate (UTS), MPa 550 to 780
400 to 500
Tensile Strength: Yield (Proof), MPa 200 to 390
160 to 320

Thermal Properties

Latent Heat of Fusion, J/g 290
170
Maximum Temperature: Mechanical, °C 930
120
Melting Completion (Liquidus), °C 1410
900
Melting Onset (Solidus), °C 1370
890
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 11
120
Thermal Expansion, µm/m-K 17
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
26
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
29

Otherwise Unclassified Properties

Base Metal Price, % relative 16
23
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 3.1
2.7
Embodied Energy, MJ/kg 43
47
Embodied Water, L/kg 150
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150 to 220
61 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 400
120 to 500
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 19 to 27
14 to 17
Strength to Weight: Bending, points 19 to 24
15 to 17
Thermal Diffusivity, mm2/s 3.0
38
Thermal Shock Resistance, points 12 to 17
13 to 16

Alloy Composition

Carbon (C), % 0 to 0.040
0
Chromium (Cr), % 17 to 19
0
Copper (Cu), % 3.0 to 4.0
59 to 62
Iron (Fe), % 63.3 to 71.5
0 to 0.1
Lead (Pb), % 0
0.4 to 1.0
Manganese (Mn), % 0 to 2.0
0
Nickel (Ni), % 8.5 to 10.5
0
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0.5 to 1.0
Zinc (Zn), % 0
35.5 to 40.1
Residuals, % 0
0 to 0.4