MakeItFrom.com
Menu (ESC)

EN 1.4567 Stainless Steel vs. C61800 Bronze

EN 1.4567 stainless steel belongs to the iron alloys classification, while C61800 bronze belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4567 stainless steel and the bottom bar is C61800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 22 to 51
26
Fatigue Strength, MPa 190 to 260
190
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
44
Shear Strength, MPa 390 to 490
310
Tensile Strength: Ultimate (UTS), MPa 550 to 780
740
Tensile Strength: Yield (Proof), MPa 200 to 390
310

Thermal Properties

Latent Heat of Fusion, J/g 290
230
Maximum Temperature: Mechanical, °C 930
220
Melting Completion (Liquidus), °C 1410
1050
Melting Onset (Solidus), °C 1370
1040
Specific Heat Capacity, J/kg-K 480
440
Thermal Conductivity, W/m-K 11
64
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
13
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
14

Otherwise Unclassified Properties

Base Metal Price, % relative 16
28
Density, g/cm3 7.8
8.3
Embodied Carbon, kg CO2/kg material 3.1
3.1
Embodied Energy, MJ/kg 43
52
Embodied Water, L/kg 150
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150 to 220
150
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 400
420
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 19 to 27
25
Strength to Weight: Bending, points 19 to 24
22
Thermal Diffusivity, mm2/s 3.0
18
Thermal Shock Resistance, points 12 to 17
26

Alloy Composition

Aluminum (Al), % 0
8.5 to 11
Carbon (C), % 0 to 0.040
0
Chromium (Cr), % 17 to 19
0
Copper (Cu), % 3.0 to 4.0
86.9 to 91
Iron (Fe), % 63.3 to 71.5
0.5 to 1.5
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0 to 2.0
0
Nickel (Ni), % 8.5 to 10.5
0
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0 to 0.1
Sulfur (S), % 0 to 0.015
0
Zinc (Zn), % 0
0 to 0.020
Residuals, % 0
0 to 0.5