MakeItFrom.com
Menu (ESC)

EN 1.4567 Stainless Steel vs. C67500 Bronze

EN 1.4567 stainless steel belongs to the iron alloys classification, while C67500 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4567 stainless steel and the bottom bar is C67500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 22 to 51
14 to 33
Poisson's Ratio 0.28
0.3
Shear Modulus, GPa 76
40
Shear Strength, MPa 390 to 490
270 to 350
Tensile Strength: Ultimate (UTS), MPa 550 to 780
430 to 580
Tensile Strength: Yield (Proof), MPa 200 to 390
170 to 370

Thermal Properties

Latent Heat of Fusion, J/g 290
170
Maximum Temperature: Mechanical, °C 930
120
Melting Completion (Liquidus), °C 1410
890
Melting Onset (Solidus), °C 1370
870
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 11
110
Thermal Expansion, µm/m-K 17
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
24
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
27

Otherwise Unclassified Properties

Base Metal Price, % relative 16
23
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 3.1
2.8
Embodied Energy, MJ/kg 43
47
Embodied Water, L/kg 150
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150 to 220
61 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 400
130 to 650
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 19 to 27
15 to 20
Strength to Weight: Bending, points 19 to 24
16 to 19
Thermal Diffusivity, mm2/s 3.0
34
Thermal Shock Resistance, points 12 to 17
14 to 19

Alloy Composition

Aluminum (Al), % 0
0 to 0.25
Carbon (C), % 0 to 0.040
0
Chromium (Cr), % 17 to 19
0
Copper (Cu), % 3.0 to 4.0
57 to 60
Iron (Fe), % 63.3 to 71.5
0.8 to 2.0
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0 to 2.0
0.050 to 0.5
Nickel (Ni), % 8.5 to 10.5
0
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0.5 to 1.5
Zinc (Zn), % 0
35.1 to 41.7
Residuals, % 0
0 to 0.5