MakeItFrom.com
Menu (ESC)

EN 1.4567 Stainless Steel vs. C85700 Brass

EN 1.4567 stainless steel belongs to the iron alloys classification, while C85700 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.4567 stainless steel and the bottom bar is C85700 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 22 to 51
17
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 76
40
Tensile Strength: Ultimate (UTS), MPa 550 to 780
310
Tensile Strength: Yield (Proof), MPa 200 to 390
110

Thermal Properties

Latent Heat of Fusion, J/g 290
170
Maximum Temperature: Mechanical, °C 930
120
Melting Completion (Liquidus), °C 1410
940
Melting Onset (Solidus), °C 1370
910
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 11
84
Thermal Expansion, µm/m-K 17
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
22
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
25

Otherwise Unclassified Properties

Base Metal Price, % relative 16
24
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 3.1
2.8
Embodied Energy, MJ/kg 43
47
Embodied Water, L/kg 150
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150 to 220
41
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 400
59
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 19 to 27
11
Strength to Weight: Bending, points 19 to 24
13
Thermal Diffusivity, mm2/s 3.0
27
Thermal Shock Resistance, points 12 to 17
10

Alloy Composition

Aluminum (Al), % 0
0 to 0.8
Carbon (C), % 0 to 0.040
0
Chromium (Cr), % 17 to 19
0
Copper (Cu), % 3.0 to 4.0
58 to 64
Iron (Fe), % 63.3 to 71.5
0 to 0.7
Lead (Pb), % 0
0.8 to 1.5
Manganese (Mn), % 0 to 2.0
0
Nickel (Ni), % 8.5 to 10.5
0 to 1.0
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0 to 0.050
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0.5 to 1.5
Zinc (Zn), % 0
32 to 40
Residuals, % 0
0 to 1.3