MakeItFrom.com
Menu (ESC)

EN 1.4567 Stainless Steel vs. C85900 Brass

EN 1.4567 stainless steel belongs to the iron alloys classification, while C85900 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4567 stainless steel and the bottom bar is C85900 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190 to 240
85
Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 22 to 51
30
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 76
40
Tensile Strength: Ultimate (UTS), MPa 550 to 780
460
Tensile Strength: Yield (Proof), MPa 200 to 390
190

Thermal Properties

Latent Heat of Fusion, J/g 290
170
Maximum Temperature: Mechanical, °C 930
130
Melting Completion (Liquidus), °C 1410
830
Melting Onset (Solidus), °C 1370
790
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 11
89
Thermal Expansion, µm/m-K 17
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
25
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
28

Otherwise Unclassified Properties

Base Metal Price, % relative 16
24
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 3.1
2.9
Embodied Energy, MJ/kg 43
49
Embodied Water, L/kg 150
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150 to 220
110
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 400
170
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 19 to 27
16
Strength to Weight: Bending, points 19 to 24
17
Thermal Diffusivity, mm2/s 3.0
29
Thermal Shock Resistance, points 12 to 17
16

Alloy Composition

Aluminum (Al), % 0
0.1 to 0.6
Antimony (Sb), % 0
0 to 0.2
Boron (B), % 0
0 to 0.2
Carbon (C), % 0 to 0.040
0
Chromium (Cr), % 17 to 19
0
Copper (Cu), % 3.0 to 4.0
58 to 62
Iron (Fe), % 63.3 to 71.5
0 to 0.5
Lead (Pb), % 0
0 to 0.090
Manganese (Mn), % 0 to 2.0
0 to 0.010
Nickel (Ni), % 8.5 to 10.5
0 to 1.5
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0 to 0.010
Silicon (Si), % 0 to 1.0
0 to 0.25
Sulfur (S), % 0 to 0.015
0.1 to 0.65
Tin (Sn), % 0
0 to 1.5
Zinc (Zn), % 0
31 to 41
Zirconium (Zr), % 0
0 to 0.2
Residuals, % 0
0 to 0.7