MakeItFrom.com
Menu (ESC)

EN 1.4567 Stainless Steel vs. N08700 Stainless Steel

Both EN 1.4567 stainless steel and N08700 stainless steel are iron alloys. They have 77% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.4567 stainless steel and the bottom bar is N08700 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190 to 240
170
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 22 to 51
32
Fatigue Strength, MPa 190 to 260
210
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
79
Shear Strength, MPa 390 to 490
410
Tensile Strength: Ultimate (UTS), MPa 550 to 780
620
Tensile Strength: Yield (Proof), MPa 200 to 390
270

Thermal Properties

Latent Heat of Fusion, J/g 290
300
Maximum Temperature: Corrosion, °C 420
460
Maximum Temperature: Mechanical, °C 930
1100
Melting Completion (Liquidus), °C 1410
1450
Melting Onset (Solidus), °C 1370
1400
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 11
13
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 16
32
Density, g/cm3 7.8
8.1
Embodied Carbon, kg CO2/kg material 3.1
6.0
Embodied Energy, MJ/kg 43
82
Embodied Water, L/kg 150
200

Common Calculations

PREN (Pitting Resistance) 19
36
Resilience: Ultimate (Unit Rupture Work), MJ/m3 150 to 220
160
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 400
180
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 19 to 27
21
Strength to Weight: Bending, points 19 to 24
20
Thermal Diffusivity, mm2/s 3.0
3.5
Thermal Shock Resistance, points 12 to 17
14

Alloy Composition

Carbon (C), % 0 to 0.040
0 to 0.040
Chromium (Cr), % 17 to 19
19 to 23
Copper (Cu), % 3.0 to 4.0
0 to 0.5
Iron (Fe), % 63.3 to 71.5
42 to 52.7
Manganese (Mn), % 0 to 2.0
0 to 2.0
Molybdenum (Mo), % 0
4.3 to 5.0
Nickel (Ni), % 8.5 to 10.5
24 to 26
Niobium (Nb), % 0
0 to 0.4
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.030