MakeItFrom.com
Menu (ESC)

EN 1.4568 Stainless Steel vs. 5059 Aluminum

EN 1.4568 stainless steel belongs to the iron alloys classification, while 5059 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4568 stainless steel and the bottom bar is 5059 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
69
Elongation at Break, % 2.3 to 21
11 to 25
Fatigue Strength, MPa 220 to 670
170 to 240
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
26
Shear Strength, MPa 520 to 930
220 to 250
Tensile Strength: Ultimate (UTS), MPa 830 to 1620
350 to 410
Tensile Strength: Yield (Proof), MPa 330 to 1490
170 to 300

Thermal Properties

Latent Heat of Fusion, J/g 280
390
Maximum Temperature: Corrosion, °C 410
65
Maximum Temperature: Mechanical, °C 890
210
Melting Completion (Liquidus), °C 1420
650
Melting Onset (Solidus), °C 1380
510
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 16
110
Thermal Expansion, µm/m-K 13
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
29
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
95

Otherwise Unclassified Properties

Base Metal Price, % relative 13
9.5
Density, g/cm3 7.7
2.7
Embodied Carbon, kg CO2/kg material 2.8
9.1
Embodied Energy, MJ/kg 40
160
Embodied Water, L/kg 140
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 36 to 140
42 to 75
Resilience: Unit (Modulus of Resilience), kJ/m3 290 to 5710
220 to 650
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 30 to 58
36 to 42
Strength to Weight: Bending, points 25 to 40
41 to 45
Thermal Diffusivity, mm2/s 4.3
44
Thermal Shock Resistance, points 23 to 46
16 to 18

Alloy Composition

Aluminum (Al), % 0.7 to 1.5
89.9 to 94
Carbon (C), % 0 to 0.090
0
Chromium (Cr), % 16 to 18
0 to 0.25
Copper (Cu), % 0
0 to 0.25
Iron (Fe), % 70.9 to 76.8
0 to 0.5
Magnesium (Mg), % 0
5.0 to 6.0
Manganese (Mn), % 0 to 1.0
0.6 to 1.2
Nickel (Ni), % 6.5 to 7.8
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.7
0 to 0.45
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0.4 to 0.9
Zirconium (Zr), % 0
0.050 to 0.25
Residuals, % 0
0 to 0.15