MakeItFrom.com
Menu (ESC)

EN 1.4568 Stainless Steel vs. 6106 Aluminum

EN 1.4568 stainless steel belongs to the iron alloys classification, while 6106 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4568 stainless steel and the bottom bar is 6106 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
69
Elongation at Break, % 2.3 to 21
9.1
Fatigue Strength, MPa 220 to 670
88
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
26
Shear Strength, MPa 520 to 930
170
Tensile Strength: Ultimate (UTS), MPa 830 to 1620
290
Tensile Strength: Yield (Proof), MPa 330 to 1490
220

Thermal Properties

Latent Heat of Fusion, J/g 280
400
Maximum Temperature: Mechanical, °C 890
160
Melting Completion (Liquidus), °C 1420
660
Melting Onset (Solidus), °C 1380
610
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 16
190
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
49
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
160

Otherwise Unclassified Properties

Base Metal Price, % relative 13
9.5
Density, g/cm3 7.7
2.7
Embodied Carbon, kg CO2/kg material 2.8
8.3
Embodied Energy, MJ/kg 40
150
Embodied Water, L/kg 140
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 36 to 140
24
Resilience: Unit (Modulus of Resilience), kJ/m3 290 to 5710
370
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 30 to 58
29
Strength to Weight: Bending, points 25 to 40
35
Thermal Diffusivity, mm2/s 4.3
78
Thermal Shock Resistance, points 23 to 46
13

Alloy Composition

Aluminum (Al), % 0.7 to 1.5
97.2 to 99.3
Carbon (C), % 0 to 0.090
0
Chromium (Cr), % 16 to 18
0 to 0.2
Copper (Cu), % 0
0 to 0.25
Iron (Fe), % 70.9 to 76.8
0 to 0.35
Magnesium (Mg), % 0
0.4 to 0.8
Manganese (Mn), % 0 to 1.0
0.050 to 0.2
Nickel (Ni), % 6.5 to 7.8
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.7
0.3 to 0.6
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.15
Residuals, % 0
0 to 0.15