MakeItFrom.com
Menu (ESC)

EN 1.4568 Stainless Steel vs. 705.0 Aluminum

EN 1.4568 stainless steel belongs to the iron alloys classification, while 705.0 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4568 stainless steel and the bottom bar is 705.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
69
Elongation at Break, % 2.3 to 21
8.4 to 10
Fatigue Strength, MPa 220 to 670
63 to 98
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
26
Tensile Strength: Ultimate (UTS), MPa 830 to 1620
240 to 260
Tensile Strength: Yield (Proof), MPa 330 to 1490
130

Thermal Properties

Latent Heat of Fusion, J/g 280
390
Maximum Temperature: Mechanical, °C 890
180
Melting Completion (Liquidus), °C 1420
640
Melting Onset (Solidus), °C 1380
610
Specific Heat Capacity, J/kg-K 480
890
Thermal Conductivity, W/m-K 16
140
Thermal Expansion, µm/m-K 13
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
34
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
110

Otherwise Unclassified Properties

Base Metal Price, % relative 13
9.5
Density, g/cm3 7.7
2.8
Embodied Carbon, kg CO2/kg material 2.8
8.4
Embodied Energy, MJ/kg 40
150
Embodied Water, L/kg 140
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 36 to 140
18 to 20
Resilience: Unit (Modulus of Resilience), kJ/m3 290 to 5710
120 to 130
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
49
Strength to Weight: Axial, points 30 to 58
24 to 26
Strength to Weight: Bending, points 25 to 40
31 to 32
Thermal Diffusivity, mm2/s 4.3
55
Thermal Shock Resistance, points 23 to 46
11

Alloy Composition

Aluminum (Al), % 0.7 to 1.5
92.3 to 98.6
Carbon (C), % 0 to 0.090
0
Chromium (Cr), % 16 to 18
0 to 0.4
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 70.9 to 76.8
0 to 0.8
Magnesium (Mg), % 0
1.4 to 1.8
Manganese (Mn), % 0 to 1.0
0 to 0.6
Nickel (Ni), % 6.5 to 7.8
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.7
0 to 0.2
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 3.3
Residuals, % 0
0 to 0.15