MakeItFrom.com
Menu (ESC)

EN 1.4568 Stainless Steel vs. 8090 Aluminum

EN 1.4568 stainless steel belongs to the iron alloys classification, while 8090 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4568 stainless steel and the bottom bar is 8090 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
67
Elongation at Break, % 2.3 to 21
3.5 to 13
Fatigue Strength, MPa 220 to 670
91 to 140
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
25
Tensile Strength: Ultimate (UTS), MPa 830 to 1620
340 to 490
Tensile Strength: Yield (Proof), MPa 330 to 1490
210 to 420

Thermal Properties

Latent Heat of Fusion, J/g 280
400
Maximum Temperature: Mechanical, °C 890
190
Melting Completion (Liquidus), °C 1420
660
Melting Onset (Solidus), °C 1380
600
Specific Heat Capacity, J/kg-K 480
960
Thermal Conductivity, W/m-K 16
95 to 160
Thermal Expansion, µm/m-K 13
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
20
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
66

Otherwise Unclassified Properties

Base Metal Price, % relative 13
18
Density, g/cm3 7.7
2.7
Embodied Carbon, kg CO2/kg material 2.8
8.6
Embodied Energy, MJ/kg 40
170
Embodied Water, L/kg 140
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 36 to 140
16 to 41
Resilience: Unit (Modulus of Resilience), kJ/m3 290 to 5710
340 to 1330
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 30 to 58
34 to 49
Strength to Weight: Bending, points 25 to 40
39 to 50
Thermal Diffusivity, mm2/s 4.3
36 to 60
Thermal Shock Resistance, points 23 to 46
15 to 22

Alloy Composition

Aluminum (Al), % 0.7 to 1.5
93 to 98.4
Carbon (C), % 0 to 0.090
0
Chromium (Cr), % 16 to 18
0 to 0.1
Copper (Cu), % 0
1.0 to 1.6
Iron (Fe), % 70.9 to 76.8
0 to 0.3
Lithium (Li), % 0
2.2 to 2.7
Magnesium (Mg), % 0
0.6 to 1.3
Manganese (Mn), % 0 to 1.0
0 to 0.1
Nickel (Ni), % 6.5 to 7.8
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.7
0 to 0.2
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.25
Zirconium (Zr), % 0
0.040 to 0.16
Residuals, % 0
0 to 0.15