MakeItFrom.com
Menu (ESC)

EN 1.4568 Stainless Steel vs. AISI 316L Stainless Steel

Both EN 1.4568 stainless steel and AISI 316L stainless steel are iron alloys. They have a moderately high 92% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.4568 stainless steel and the bottom bar is AISI 316L stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 2.3 to 21
9.0 to 50
Fatigue Strength, MPa 220 to 670
170 to 450
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
78
Shear Strength, MPa 520 to 930
370 to 690
Tensile Strength: Ultimate (UTS), MPa 830 to 1620
530 to 1160
Tensile Strength: Yield (Proof), MPa 330 to 1490
190 to 870

Thermal Properties

Latent Heat of Fusion, J/g 280
290
Maximum Temperature: Corrosion, °C 410
410
Maximum Temperature: Mechanical, °C 890
870
Melting Completion (Liquidus), °C 1420
1400
Melting Onset (Solidus), °C 1380
1380
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 16
15
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 13
19
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 2.8
3.9
Embodied Energy, MJ/kg 40
53
Embodied Water, L/kg 140
150

Common Calculations

PREN (Pitting Resistance) 17
26
Resilience: Ultimate (Unit Rupture Work), MJ/m3 36 to 140
77 to 230
Resilience: Unit (Modulus of Resilience), kJ/m3 290 to 5710
93 to 1880
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 30 to 58
19 to 41
Strength to Weight: Bending, points 25 to 40
18 to 31
Thermal Diffusivity, mm2/s 4.3
4.1
Thermal Shock Resistance, points 23 to 46
12 to 25

Alloy Composition

Aluminum (Al), % 0.7 to 1.5
0
Carbon (C), % 0 to 0.090
0 to 0.030
Chromium (Cr), % 16 to 18
16 to 18
Iron (Fe), % 70.9 to 76.8
62 to 72
Manganese (Mn), % 0 to 1.0
0 to 2.0
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 6.5 to 7.8
10 to 14
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0 to 0.040
0 to 0.045
Silicon (Si), % 0 to 0.7
0 to 0.75
Sulfur (S), % 0 to 0.015
0 to 0.030