MakeItFrom.com
Menu (ESC)

EN 1.4568 Stainless Steel vs. EN 1.8872 Steel

Both EN 1.4568 stainless steel and EN 1.8872 steel are iron alloys. They have 75% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4568 stainless steel and the bottom bar is EN 1.8872 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 2.3 to 21
21
Fatigue Strength, MPa 220 to 670
310
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
73
Shear Strength, MPa 520 to 930
380
Tensile Strength: Ultimate (UTS), MPa 830 to 1620
610
Tensile Strength: Yield (Proof), MPa 330 to 1490
450

Thermal Properties

Latent Heat of Fusion, J/g 280
250
Maximum Temperature: Mechanical, °C 890
410
Melting Completion (Liquidus), °C 1420
1460
Melting Onset (Solidus), °C 1380
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 16
39
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 13
2.8
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 2.8
1.7
Embodied Energy, MJ/kg 40
22
Embodied Water, L/kg 140
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 36 to 140
120
Resilience: Unit (Modulus of Resilience), kJ/m3 290 to 5710
530
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 30 to 58
22
Strength to Weight: Bending, points 25 to 40
20
Thermal Diffusivity, mm2/s 4.3
10
Thermal Shock Resistance, points 23 to 46
18

Alloy Composition

Aluminum (Al), % 0.7 to 1.5
0
Boron (B), % 0
0 to 0.0050
Carbon (C), % 0 to 0.090
0 to 0.18
Chromium (Cr), % 16 to 18
0 to 0.5
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 70.9 to 76.8
95.1 to 100
Manganese (Mn), % 0 to 1.0
0 to 1.7
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 6.5 to 7.8
0 to 1.0
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0 to 0.040
0 to 0.020
Silicon (Si), % 0 to 0.7
0 to 0.5
Sulfur (S), % 0 to 0.015
0 to 0.0080
Titanium (Ti), % 0
0 to 0.030
Vanadium (V), % 0
0 to 0.080
Zirconium (Zr), % 0
0 to 0.050