MakeItFrom.com
Menu (ESC)

EN 1.4568 Stainless Steel vs. C14520 Copper

EN 1.4568 stainless steel belongs to the iron alloys classification, while C14520 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.4568 stainless steel and the bottom bar is C14520 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 2.3 to 21
9.0 to 9.6
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
43
Shear Strength, MPa 520 to 930
170 to 190
Tensile Strength: Ultimate (UTS), MPa 830 to 1620
290 to 330
Tensile Strength: Yield (Proof), MPa 330 to 1490
230 to 250

Thermal Properties

Latent Heat of Fusion, J/g 280
210
Maximum Temperature: Mechanical, °C 890
200
Melting Completion (Liquidus), °C 1420
1080
Melting Onset (Solidus), °C 1380
1050
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 16
320
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
85
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
85

Otherwise Unclassified Properties

Base Metal Price, % relative 13
33
Density, g/cm3 7.7
8.9
Embodied Carbon, kg CO2/kg material 2.8
2.6
Embodied Energy, MJ/kg 40
42
Embodied Water, L/kg 140
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 36 to 140
24 to 29
Resilience: Unit (Modulus of Resilience), kJ/m3 290 to 5710
240 to 280
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 30 to 58
9.0 to 10
Strength to Weight: Bending, points 25 to 40
11 to 12
Thermal Diffusivity, mm2/s 4.3
94
Thermal Shock Resistance, points 23 to 46
10 to 12

Alloy Composition

Aluminum (Al), % 0.7 to 1.5
0
Carbon (C), % 0 to 0.090
0
Chromium (Cr), % 16 to 18
0
Copper (Cu), % 0
99.2 to 99.596
Iron (Fe), % 70.9 to 76.8
0
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 6.5 to 7.8
0
Phosphorus (P), % 0 to 0.040
0.0040 to 0.020
Silicon (Si), % 0 to 0.7
0
Sulfur (S), % 0 to 0.015
0
Tellurium (Te), % 0
0.4 to 0.7