MakeItFrom.com
Menu (ESC)

EN 1.4568 Stainless Steel vs. C19400 Copper

EN 1.4568 stainless steel belongs to the iron alloys classification, while C19400 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4568 stainless steel and the bottom bar is C19400 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 2.3 to 21
2.3 to 37
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
44
Shear Strength, MPa 520 to 930
210 to 300
Tensile Strength: Ultimate (UTS), MPa 830 to 1620
310 to 630
Tensile Strength: Yield (Proof), MPa 330 to 1490
98 to 520

Thermal Properties

Latent Heat of Fusion, J/g 280
210
Maximum Temperature: Mechanical, °C 890
200
Melting Completion (Liquidus), °C 1420
1090
Melting Onset (Solidus), °C 1380
1080
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 16
260
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
58 to 68
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
58 to 69

Otherwise Unclassified Properties

Base Metal Price, % relative 13
30
Density, g/cm3 7.7
8.9
Embodied Carbon, kg CO2/kg material 2.8
2.6
Embodied Energy, MJ/kg 40
40
Embodied Water, L/kg 140
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 36 to 140
5.5 to 220
Resilience: Unit (Modulus of Resilience), kJ/m3 290 to 5710
41 to 1140
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 30 to 58
9.7 to 20
Strength to Weight: Bending, points 25 to 40
11 to 18
Thermal Diffusivity, mm2/s 4.3
75
Thermal Shock Resistance, points 23 to 46
11 to 22

Alloy Composition

Aluminum (Al), % 0.7 to 1.5
0
Carbon (C), % 0 to 0.090
0
Chromium (Cr), % 16 to 18
0
Copper (Cu), % 0
96.8 to 97.8
Iron (Fe), % 70.9 to 76.8
2.1 to 2.6
Lead (Pb), % 0
0 to 0.030
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 6.5 to 7.8
0
Phosphorus (P), % 0 to 0.040
0.015 to 0.15
Silicon (Si), % 0 to 0.7
0
Sulfur (S), % 0 to 0.015
0
Zinc (Zn), % 0
0.050 to 0.2
Residuals, % 0
0 to 0.2