MakeItFrom.com
Menu (ESC)

EN 1.4568 Stainless Steel vs. C21000 Brass

EN 1.4568 stainless steel belongs to the iron alloys classification, while C21000 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4568 stainless steel and the bottom bar is C21000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 2.3 to 21
2.9 to 50
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
43
Shear Strength, MPa 520 to 930
180 to 280
Tensile Strength: Ultimate (UTS), MPa 830 to 1620
240 to 450
Tensile Strength: Yield (Proof), MPa 330 to 1490
69 to 440

Thermal Properties

Latent Heat of Fusion, J/g 280
200
Maximum Temperature: Mechanical, °C 890
190
Melting Completion (Liquidus), °C 1420
1070
Melting Onset (Solidus), °C 1380
1050
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 16
230
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
56
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
57

Otherwise Unclassified Properties

Base Metal Price, % relative 13
30
Density, g/cm3 7.7
8.8
Embodied Carbon, kg CO2/kg material 2.8
2.6
Embodied Energy, MJ/kg 40
42
Embodied Water, L/kg 140
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 36 to 140
13 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 290 to 5710
21 to 830
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 30 to 58
7.4 to 14
Strength to Weight: Bending, points 25 to 40
9.6 to 15
Thermal Diffusivity, mm2/s 4.3
69
Thermal Shock Resistance, points 23 to 46
8.1 to 15

Alloy Composition

Aluminum (Al), % 0.7 to 1.5
0
Carbon (C), % 0 to 0.090
0
Chromium (Cr), % 16 to 18
0
Copper (Cu), % 0
94 to 96
Iron (Fe), % 70.9 to 76.8
0 to 0.050
Lead (Pb), % 0
0 to 0.030
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 6.5 to 7.8
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.7
0
Sulfur (S), % 0 to 0.015
0
Zinc (Zn), % 0
3.7 to 6.0
Residuals, % 0
0 to 0.2