MakeItFrom.com
Menu (ESC)

EN 1.4568 Stainless Steel vs. C51100 Bronze

EN 1.4568 stainless steel belongs to the iron alloys classification, while C51100 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4568 stainless steel and the bottom bar is C51100 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 2.3 to 21
2.5 to 50
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
42
Shear Strength, MPa 520 to 930
230 to 410
Tensile Strength: Ultimate (UTS), MPa 830 to 1620
330 to 720
Tensile Strength: Yield (Proof), MPa 330 to 1490
93 to 700

Thermal Properties

Latent Heat of Fusion, J/g 280
200
Maximum Temperature: Mechanical, °C 890
190
Melting Completion (Liquidus), °C 1420
1060
Melting Onset (Solidus), °C 1380
970
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 16
84
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
20
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
20

Otherwise Unclassified Properties

Base Metal Price, % relative 13
32
Density, g/cm3 7.7
8.9
Embodied Carbon, kg CO2/kg material 2.8
3.0
Embodied Energy, MJ/kg 40
48
Embodied Water, L/kg 140
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 36 to 140
18 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 290 to 5710
38 to 2170
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 30 to 58
10 to 22
Strength to Weight: Bending, points 25 to 40
12 to 20
Thermal Diffusivity, mm2/s 4.3
25
Thermal Shock Resistance, points 23 to 46
12 to 26

Alloy Composition

Aluminum (Al), % 0.7 to 1.5
0
Carbon (C), % 0 to 0.090
0
Chromium (Cr), % 16 to 18
0
Copper (Cu), % 0
93.8 to 96.5
Iron (Fe), % 70.9 to 76.8
0 to 0.1
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 6.5 to 7.8
0
Phosphorus (P), % 0 to 0.040
0.030 to 0.35
Silicon (Si), % 0 to 0.7
0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
3.5 to 4.9
Zinc (Zn), % 0
0 to 0.3
Residuals, % 0
0 to 0.5