MakeItFrom.com
Menu (ESC)

EN 1.4568 Stainless Steel vs. C69430 Brass

EN 1.4568 stainless steel belongs to the iron alloys classification, while C69430 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.4568 stainless steel and the bottom bar is C69430 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 2.3 to 21
17
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
42
Shear Strength, MPa 520 to 930
350
Tensile Strength: Ultimate (UTS), MPa 830 to 1620
570
Tensile Strength: Yield (Proof), MPa 330 to 1490
280

Thermal Properties

Latent Heat of Fusion, J/g 280
260
Maximum Temperature: Mechanical, °C 890
170
Melting Completion (Liquidus), °C 1420
920
Melting Onset (Solidus), °C 1380
820
Specific Heat Capacity, J/kg-K 480
410
Thermal Conductivity, W/m-K 16
26
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
6.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
6.7

Otherwise Unclassified Properties

Base Metal Price, % relative 13
27
Density, g/cm3 7.7
8.3
Embodied Carbon, kg CO2/kg material 2.8
2.7
Embodied Energy, MJ/kg 40
44
Embodied Water, L/kg 140
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 36 to 140
80
Resilience: Unit (Modulus of Resilience), kJ/m3 290 to 5710
340
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 30 to 58
19
Strength to Weight: Bending, points 25 to 40
18
Thermal Diffusivity, mm2/s 4.3
7.7
Thermal Shock Resistance, points 23 to 46
20

Alloy Composition

Aluminum (Al), % 0.7 to 1.5
0
Arsenic (As), % 0
0.030 to 0.060
Carbon (C), % 0 to 0.090
0
Chromium (Cr), % 16 to 18
0
Copper (Cu), % 0
80 to 83
Iron (Fe), % 70.9 to 76.8
0 to 0.2
Lead (Pb), % 0
0 to 0.3
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 6.5 to 7.8
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.7
3.5 to 4.5
Sulfur (S), % 0 to 0.015
0
Zinc (Zn), % 0
11.4 to 16.5
Residuals, % 0
0 to 0.5