MakeItFrom.com
Menu (ESC)

EN 1.4568 Stainless Steel vs. C85200 Brass

EN 1.4568 stainless steel belongs to the iron alloys classification, while C85200 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4568 stainless steel and the bottom bar is C85200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 2.3 to 21
28
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 76
40
Tensile Strength: Ultimate (UTS), MPa 830 to 1620
270
Tensile Strength: Yield (Proof), MPa 330 to 1490
95

Thermal Properties

Latent Heat of Fusion, J/g 280
180
Maximum Temperature: Mechanical, °C 890
140
Melting Completion (Liquidus), °C 1420
940
Melting Onset (Solidus), °C 1380
930
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 16
84
Thermal Expansion, µm/m-K 13
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
18
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
19

Otherwise Unclassified Properties

Base Metal Price, % relative 13
26
Density, g/cm3 7.7
8.4
Embodied Carbon, kg CO2/kg material 2.8
2.8
Embodied Energy, MJ/kg 40
46
Embodied Water, L/kg 140
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 36 to 140
59
Resilience: Unit (Modulus of Resilience), kJ/m3 290 to 5710
42
Stiffness to Weight: Axial, points 14
7.0
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 30 to 58
8.9
Strength to Weight: Bending, points 25 to 40
11
Thermal Diffusivity, mm2/s 4.3
27
Thermal Shock Resistance, points 23 to 46
9.3

Alloy Composition

Aluminum (Al), % 0.7 to 1.5
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Carbon (C), % 0 to 0.090
0
Chromium (Cr), % 16 to 18
0
Copper (Cu), % 0
70 to 74
Iron (Fe), % 70.9 to 76.8
0 to 0.6
Lead (Pb), % 0
1.5 to 3.8
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 6.5 to 7.8
0 to 1.0
Phosphorus (P), % 0 to 0.040
0 to 0.020
Silicon (Si), % 0 to 0.7
0 to 0.050
Sulfur (S), % 0 to 0.015
0 to 0.050
Tin (Sn), % 0
0.7 to 2.0
Zinc (Zn), % 0
20 to 27
Residuals, % 0
0 to 0.9