MakeItFrom.com
Menu (ESC)

EN 1.4568 Stainless Steel vs. C85800 Brass

EN 1.4568 stainless steel belongs to the iron alloys classification, while C85800 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4568 stainless steel and the bottom bar is C85800 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 2.3 to 21
15
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 76
40
Tensile Strength: Ultimate (UTS), MPa 830 to 1620
380
Tensile Strength: Yield (Proof), MPa 330 to 1490
210

Thermal Properties

Latent Heat of Fusion, J/g 280
170
Maximum Temperature: Mechanical, °C 890
120
Melting Completion (Liquidus), °C 1420
900
Melting Onset (Solidus), °C 1380
870
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 16
84
Thermal Expansion, µm/m-K 13
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
20
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
22

Otherwise Unclassified Properties

Base Metal Price, % relative 13
24
Density, g/cm3 7.7
8.0
Embodied Carbon, kg CO2/kg material 2.8
2.8
Embodied Energy, MJ/kg 40
47
Embodied Water, L/kg 140
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 36 to 140
48
Resilience: Unit (Modulus of Resilience), kJ/m3 290 to 5710
210
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 30 to 58
13
Strength to Weight: Bending, points 25 to 40
15
Thermal Diffusivity, mm2/s 4.3
27
Thermal Shock Resistance, points 23 to 46
13

Alloy Composition

Aluminum (Al), % 0.7 to 1.5
0 to 0.55
Antimony (Sb), % 0
0 to 0.050
Arsenic (As), % 0
0 to 0.050
Carbon (C), % 0 to 0.090
0
Chromium (Cr), % 16 to 18
0
Copper (Cu), % 0
57 to 69
Iron (Fe), % 70.9 to 76.8
0 to 0.5
Lead (Pb), % 0
0 to 1.5
Manganese (Mn), % 0 to 1.0
0 to 0.25
Nickel (Ni), % 6.5 to 7.8
0 to 0.5
Phosphorus (P), % 0 to 0.040
0 to 0.010
Silicon (Si), % 0 to 0.7
0 to 0.25
Sulfur (S), % 0 to 0.015
0 to 0.050
Tin (Sn), % 0
0 to 1.5
Zinc (Zn), % 0
31 to 41
Residuals, % 0
0 to 1.3