MakeItFrom.com
Menu (ESC)

EN 1.4568 Stainless Steel vs. C92200 Bronze

EN 1.4568 stainless steel belongs to the iron alloys classification, while C92200 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.4568 stainless steel and the bottom bar is C92200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 2.3 to 21
25
Fatigue Strength, MPa 220 to 670
76
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
41
Tensile Strength: Ultimate (UTS), MPa 830 to 1620
280
Tensile Strength: Yield (Proof), MPa 330 to 1490
140

Thermal Properties

Latent Heat of Fusion, J/g 280
190
Maximum Temperature: Mechanical, °C 890
170
Melting Completion (Liquidus), °C 1420
990
Melting Onset (Solidus), °C 1380
830
Specific Heat Capacity, J/kg-K 480
370
Thermal Conductivity, W/m-K 16
70
Thermal Expansion, µm/m-K 13
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
14
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
14

Otherwise Unclassified Properties

Base Metal Price, % relative 13
32
Density, g/cm3 7.7
8.7
Embodied Carbon, kg CO2/kg material 2.8
3.2
Embodied Energy, MJ/kg 40
52
Embodied Water, L/kg 140
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 36 to 140
58
Resilience: Unit (Modulus of Resilience), kJ/m3 290 to 5710
87
Stiffness to Weight: Axial, points 14
6.9
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 30 to 58
8.9
Strength to Weight: Bending, points 25 to 40
11
Thermal Diffusivity, mm2/s 4.3
21
Thermal Shock Resistance, points 23 to 46
9.9

Alloy Composition

Aluminum (Al), % 0.7 to 1.5
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Carbon (C), % 0 to 0.090
0
Chromium (Cr), % 16 to 18
0
Copper (Cu), % 0
86 to 90
Iron (Fe), % 70.9 to 76.8
0 to 0.25
Lead (Pb), % 0
1.0 to 2.0
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 6.5 to 7.8
0 to 1.0
Phosphorus (P), % 0 to 0.040
0 to 1.5
Silicon (Si), % 0 to 0.7
0 to 0.0050
Sulfur (S), % 0 to 0.015
0 to 0.050
Tin (Sn), % 0
5.5 to 6.5
Zinc (Zn), % 0
3.0 to 5.0
Residuals, % 0
0 to 0.7