MakeItFrom.com
Menu (ESC)

EN 1.4568 Stainless Steel vs. C92600 Bronze

EN 1.4568 stainless steel belongs to the iron alloys classification, while C92600 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.4568 stainless steel and the bottom bar is C92600 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 2.3 to 21
30
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
40
Tensile Strength: Ultimate (UTS), MPa 830 to 1620
300
Tensile Strength: Yield (Proof), MPa 330 to 1490
140

Thermal Properties

Latent Heat of Fusion, J/g 280
190
Maximum Temperature: Mechanical, °C 890
170
Melting Completion (Liquidus), °C 1420
980
Melting Onset (Solidus), °C 1380
840
Specific Heat Capacity, J/kg-K 480
370
Thermal Conductivity, W/m-K 16
67
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
9.3

Otherwise Unclassified Properties

Base Metal Price, % relative 13
34
Density, g/cm3 7.7
8.7
Embodied Carbon, kg CO2/kg material 2.8
3.6
Embodied Energy, MJ/kg 40
58
Embodied Water, L/kg 140
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 36 to 140
74
Resilience: Unit (Modulus of Resilience), kJ/m3 290 to 5710
88
Stiffness to Weight: Axial, points 14
6.8
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 30 to 58
9.6
Strength to Weight: Bending, points 25 to 40
11
Thermal Diffusivity, mm2/s 4.3
21
Thermal Shock Resistance, points 23 to 46
11

Alloy Composition

Aluminum (Al), % 0.7 to 1.5
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Carbon (C), % 0 to 0.090
0
Chromium (Cr), % 16 to 18
0
Copper (Cu), % 0
86 to 88.5
Iron (Fe), % 70.9 to 76.8
0 to 0.2
Lead (Pb), % 0
0.8 to 1.5
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 6.5 to 7.8
0 to 0.7
Phosphorus (P), % 0 to 0.040
0 to 0.030
Silicon (Si), % 0 to 0.7
0 to 0.0050
Sulfur (S), % 0 to 0.015
0 to 0.050
Tin (Sn), % 0
9.3 to 10.5
Zinc (Zn), % 0
1.3 to 2.5
Residuals, % 0
0 to 0.7