MakeItFrom.com
Menu (ESC)

EN 1.4568 Stainless Steel vs. C96300 Copper-nickel

EN 1.4568 stainless steel belongs to the iron alloys classification, while C96300 copper-nickel belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4568 stainless steel and the bottom bar is C96300 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
130
Elongation at Break, % 2.3 to 21
11
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
49
Tensile Strength: Ultimate (UTS), MPa 830 to 1620
580
Tensile Strength: Yield (Proof), MPa 330 to 1490
430

Thermal Properties

Latent Heat of Fusion, J/g 280
230
Maximum Temperature: Mechanical, °C 890
240
Melting Completion (Liquidus), °C 1420
1200
Melting Onset (Solidus), °C 1380
1150
Specific Heat Capacity, J/kg-K 480
400
Thermal Conductivity, W/m-K 16
37
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
6.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
6.1

Otherwise Unclassified Properties

Base Metal Price, % relative 13
42
Density, g/cm3 7.7
8.9
Embodied Carbon, kg CO2/kg material 2.8
5.1
Embodied Energy, MJ/kg 40
76
Embodied Water, L/kg 140
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 36 to 140
59
Resilience: Unit (Modulus of Resilience), kJ/m3 290 to 5710
720
Stiffness to Weight: Axial, points 14
8.2
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 30 to 58
18
Strength to Weight: Bending, points 25 to 40
17
Thermal Diffusivity, mm2/s 4.3
10
Thermal Shock Resistance, points 23 to 46
20

Alloy Composition

Aluminum (Al), % 0.7 to 1.5
0
Carbon (C), % 0 to 0.090
0 to 0.15
Chromium (Cr), % 16 to 18
0
Copper (Cu), % 0
72.3 to 80.8
Iron (Fe), % 70.9 to 76.8
0.5 to 1.5
Lead (Pb), % 0
0 to 0.010
Manganese (Mn), % 0 to 1.0
0.25 to 1.5
Nickel (Ni), % 6.5 to 7.8
18 to 22
Niobium (Nb), % 0
0.5 to 1.5
Phosphorus (P), % 0 to 0.040
0 to 0.020
Silicon (Si), % 0 to 0.7
0 to 0.5
Sulfur (S), % 0 to 0.015
0 to 0.020
Residuals, % 0
0 to 0.5