MakeItFrom.com
Menu (ESC)

EN 1.4568 Stainless Steel vs. C96600 Copper

EN 1.4568 stainless steel belongs to the iron alloys classification, while C96600 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4568 stainless steel and the bottom bar is C96600 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
140
Elongation at Break, % 2.3 to 21
7.0
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
52
Tensile Strength: Ultimate (UTS), MPa 830 to 1620
760
Tensile Strength: Yield (Proof), MPa 330 to 1490
480

Thermal Properties

Latent Heat of Fusion, J/g 280
240
Maximum Temperature: Mechanical, °C 890
280
Melting Completion (Liquidus), °C 1420
1180
Melting Onset (Solidus), °C 1380
1100
Specific Heat Capacity, J/kg-K 480
400
Thermal Conductivity, W/m-K 16
30
Thermal Expansion, µm/m-K 13
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
4.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
4.1

Otherwise Unclassified Properties

Base Metal Price, % relative 13
65
Density, g/cm3 7.7
8.9
Embodied Carbon, kg CO2/kg material 2.8
7.0
Embodied Energy, MJ/kg 40
100
Embodied Water, L/kg 140
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 36 to 140
47
Resilience: Unit (Modulus of Resilience), kJ/m3 290 to 5710
830
Stiffness to Weight: Axial, points 14
8.7
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 30 to 58
24
Strength to Weight: Bending, points 25 to 40
21
Thermal Diffusivity, mm2/s 4.3
8.4
Thermal Shock Resistance, points 23 to 46
25

Alloy Composition

Aluminum (Al), % 0.7 to 1.5
0
Beryllium (Be), % 0
0.4 to 0.7
Carbon (C), % 0 to 0.090
0
Chromium (Cr), % 16 to 18
0
Copper (Cu), % 0
63.5 to 69.8
Iron (Fe), % 70.9 to 76.8
0.8 to 1.1
Lead (Pb), % 0
0 to 0.010
Manganese (Mn), % 0 to 1.0
0 to 1.0
Nickel (Ni), % 6.5 to 7.8
29 to 33
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.7
0 to 0.15
Sulfur (S), % 0 to 0.015
0
Residuals, % 0
0 to 0.5