MakeItFrom.com
Menu (ESC)

EN 1.4568 Stainless Steel vs. S44535 Stainless Steel

Both EN 1.4568 stainless steel and S44535 stainless steel are iron alloys. They have a moderately high 92% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.4568 stainless steel and the bottom bar is S44535 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 2.3 to 21
28
Fatigue Strength, MPa 220 to 670
210
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 76
78
Shear Strength, MPa 520 to 930
290
Tensile Strength: Ultimate (UTS), MPa 830 to 1620
450
Tensile Strength: Yield (Proof), MPa 330 to 1490
290

Thermal Properties

Latent Heat of Fusion, J/g 280
290
Maximum Temperature: Corrosion, °C 410
450
Maximum Temperature: Mechanical, °C 890
1000
Melting Completion (Liquidus), °C 1420
1430
Melting Onset (Solidus), °C 1380
1390
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 16
21
Thermal Expansion, µm/m-K 13
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
3.1

Otherwise Unclassified Properties

Base Metal Price, % relative 13
11
Density, g/cm3 7.7
7.7
Embodied Carbon, kg CO2/kg material 2.8
2.4
Embodied Energy, MJ/kg 40
34
Embodied Water, L/kg 140
140

Common Calculations

PREN (Pitting Resistance) 17
22
Resilience: Ultimate (Unit Rupture Work), MJ/m3 36 to 140
110
Resilience: Unit (Modulus of Resilience), kJ/m3 290 to 5710
200
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 30 to 58
16
Strength to Weight: Bending, points 25 to 40
17
Thermal Diffusivity, mm2/s 4.3
5.6
Thermal Shock Resistance, points 23 to 46
15

Alloy Composition

Aluminum (Al), % 0.7 to 1.5
0 to 0.5
Carbon (C), % 0 to 0.090
0 to 0.030
Chromium (Cr), % 16 to 18
20 to 24
Copper (Cu), % 0
0 to 0.5
Iron (Fe), % 70.9 to 76.8
73.2 to 79.6
Lanthanum (La), % 0
0.040 to 0.2
Manganese (Mn), % 0 to 1.0
0.3 to 0.8
Nickel (Ni), % 6.5 to 7.8
0
Phosphorus (P), % 0 to 0.040
0 to 0.050
Silicon (Si), % 0 to 0.7
0 to 0.5
Sulfur (S), % 0 to 0.015
0 to 0.020
Titanium (Ti), % 0
0.030 to 0.2