MakeItFrom.com
Menu (ESC)

EN 1.4571 Stainless Steel vs. AWS E110C-K4

Both EN 1.4571 stainless steel and AWS E110C-K4 are iron alloys. They have 70% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.4571 stainless steel and the bottom bar is AWS E110C-K4.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 14 to 40
17
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 78
73
Tensile Strength: Ultimate (UTS), MPa 600 to 900
850
Tensile Strength: Yield (Proof), MPa 230 to 570
780

Thermal Properties

Latent Heat of Fusion, J/g 290
250
Melting Completion (Liquidus), °C 1440
1460
Melting Onset (Solidus), °C 1400
1410
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 15
41
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
9.2

Otherwise Unclassified Properties

Base Metal Price, % relative 19
3.5
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 3.9
1.7
Embodied Energy, MJ/kg 54
23
Embodied Water, L/kg 150
54

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 190
140
Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 820
1600
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 21 to 32
30
Strength to Weight: Bending, points 20 to 26
25
Thermal Diffusivity, mm2/s 4.0
11
Thermal Shock Resistance, points 13 to 20
25

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.15
Chromium (Cr), % 16.5 to 18.5
0.15 to 0.65
Copper (Cu), % 0
0 to 0.35
Iron (Fe), % 61.7 to 71
92.1 to 98.4
Manganese (Mn), % 0 to 2.0
0.75 to 2.3
Molybdenum (Mo), % 2.0 to 2.5
0.25 to 0.65
Nickel (Ni), % 10.5 to 13.5
0.5 to 2.5
Phosphorus (P), % 0 to 0.045
0 to 0.025
Silicon (Si), % 0 to 1.0
0 to 0.8
Sulfur (S), % 0 to 0.015
0 to 0.025
Titanium (Ti), % 0 to 0.7
0
Vanadium (V), % 0
0 to 0.030
Residuals, % 0
0 to 0.5