MakeItFrom.com
Menu (ESC)

EN 1.4571 Stainless Steel vs. AWS E80C-B2

Both EN 1.4571 stainless steel and AWS E80C-B2 are iron alloys. They have 69% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4571 stainless steel and the bottom bar is AWS E80C-B2.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 14 to 40
22
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 78
73
Tensile Strength: Ultimate (UTS), MPa 600 to 900
630
Tensile Strength: Yield (Proof), MPa 230 to 570
530

Thermal Properties

Latent Heat of Fusion, J/g 290
260
Melting Completion (Liquidus), °C 1440
1460
Melting Onset (Solidus), °C 1400
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 15
39
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 19
3.0
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 3.9
1.6
Embodied Energy, MJ/kg 54
22
Embodied Water, L/kg 150
53

Common Calculations

PREN (Pitting Resistance) 25
3.0
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 190
130
Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 820
740
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 21 to 32
22
Strength to Weight: Bending, points 20 to 26
21
Thermal Diffusivity, mm2/s 4.0
11
Thermal Shock Resistance, points 13 to 20
18

Alloy Composition

Carbon (C), % 0 to 0.080
0.050 to 0.12
Chromium (Cr), % 16.5 to 18.5
1.0 to 1.5
Iron (Fe), % 61.7 to 71
95.3 to 97.9
Manganese (Mn), % 0 to 2.0
0.4 to 1.0
Molybdenum (Mo), % 2.0 to 2.5
0.4 to 0.65
Nickel (Ni), % 10.5 to 13.5
0 to 0.2
Phosphorus (P), % 0 to 0.045
0 to 0.025
Silicon (Si), % 0 to 1.0
0.25 to 0.6
Sulfur (S), % 0 to 0.015
0 to 0.030
Titanium (Ti), % 0 to 0.7
0
Vanadium (V), % 0
0 to 0.030
Residuals, % 0
0 to 0.5