MakeItFrom.com
Menu (ESC)

EN 1.4571 Stainless Steel vs. EN 1.4477 Stainless Steel

Both EN 1.4571 stainless steel and EN 1.4477 stainless steel are iron alloys. They have 88% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.4571 stainless steel and the bottom bar is EN 1.4477 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190 to 270
270
Elastic (Young's, Tensile) Modulus, GPa 200
210
Elongation at Break, % 14 to 40
22 to 23
Fatigue Strength, MPa 200 to 330
420 to 490
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 78
81
Shear Strength, MPa 410 to 550
550 to 580
Tensile Strength: Ultimate (UTS), MPa 600 to 900
880 to 930
Tensile Strength: Yield (Proof), MPa 230 to 570
620 to 730

Thermal Properties

Latent Heat of Fusion, J/g 290
300
Maximum Temperature: Corrosion, °C 480
460
Maximum Temperature: Mechanical, °C 950
1100
Melting Completion (Liquidus), °C 1440
1430
Melting Onset (Solidus), °C 1400
1380
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 15
13
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 19
20
Density, g/cm3 7.9
7.7
Embodied Carbon, kg CO2/kg material 3.9
3.7
Embodied Energy, MJ/kg 54
52
Embodied Water, L/kg 150
190

Common Calculations

PREN (Pitting Resistance) 25
41
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 190
180 to 190
Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 820
940 to 1290
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 21 to 32
31 to 33
Strength to Weight: Bending, points 20 to 26
26 to 27
Thermal Diffusivity, mm2/s 4.0
3.5
Thermal Shock Resistance, points 13 to 20
23 to 25

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.030
Chromium (Cr), % 16.5 to 18.5
28 to 30
Copper (Cu), % 0
0 to 0.8
Iron (Fe), % 61.7 to 71
56.6 to 63.6
Manganese (Mn), % 0 to 2.0
0.8 to 1.5
Molybdenum (Mo), % 2.0 to 2.5
1.5 to 2.6
Nickel (Ni), % 10.5 to 13.5
5.8 to 7.5
Nitrogen (N), % 0
0.3 to 0.4
Phosphorus (P), % 0 to 0.045
0 to 0.030
Silicon (Si), % 0 to 1.0
0 to 0.5
Sulfur (S), % 0 to 0.015
0 to 0.015
Titanium (Ti), % 0 to 0.7
0