MakeItFrom.com
Menu (ESC)

EN 1.4571 Stainless Steel vs. C90800 Bronze

EN 1.4571 stainless steel belongs to the iron alloys classification, while C90800 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4571 stainless steel and the bottom bar is C90800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190 to 270
90
Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 14 to 40
13
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 78
40
Tensile Strength: Ultimate (UTS), MPa 600 to 900
330
Tensile Strength: Yield (Proof), MPa 230 to 570
170

Thermal Properties

Latent Heat of Fusion, J/g 290
190
Maximum Temperature: Mechanical, °C 950
170
Melting Completion (Liquidus), °C 1440
990
Melting Onset (Solidus), °C 1400
870
Specific Heat Capacity, J/kg-K 470
370
Thermal Conductivity, W/m-K 15
68
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
11
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
11

Otherwise Unclassified Properties

Base Metal Price, % relative 19
36
Density, g/cm3 7.9
8.7
Embodied Carbon, kg CO2/kg material 3.9
3.8
Embodied Energy, MJ/kg 54
62
Embodied Water, L/kg 150
410

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 190
35
Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 820
140
Stiffness to Weight: Axial, points 14
6.9
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 21 to 32
11
Strength to Weight: Bending, points 20 to 26
12
Thermal Diffusivity, mm2/s 4.0
21
Thermal Shock Resistance, points 13 to 20
12

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 16.5 to 18.5
0
Copper (Cu), % 0
85.3 to 89
Iron (Fe), % 61.7 to 71
0 to 0.15
Lead (Pb), % 0
0 to 0.25
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 2.0 to 2.5
0
Nickel (Ni), % 10.5 to 13.5
0 to 0.5
Phosphorus (P), % 0 to 0.045
0 to 0.3
Silicon (Si), % 0 to 1.0
0 to 0.0050
Sulfur (S), % 0 to 0.015
0 to 0.050
Tin (Sn), % 0
11 to 13
Titanium (Ti), % 0 to 0.7
0
Zinc (Zn), % 0
0 to 0.25