MakeItFrom.com
Menu (ESC)

EN 1.4571 Stainless Steel vs. C92900 Bronze

EN 1.4571 stainless steel belongs to the iron alloys classification, while C92900 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4571 stainless steel and the bottom bar is C92900 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190 to 270
84
Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 14 to 40
9.1
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 78
40
Tensile Strength: Ultimate (UTS), MPa 600 to 900
350
Tensile Strength: Yield (Proof), MPa 230 to 570
190

Thermal Properties

Latent Heat of Fusion, J/g 290
190
Maximum Temperature: Mechanical, °C 950
170
Melting Completion (Liquidus), °C 1440
1030
Melting Onset (Solidus), °C 1400
860
Specific Heat Capacity, J/kg-K 470
370
Thermal Conductivity, W/m-K 15
58
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
9.2

Otherwise Unclassified Properties

Base Metal Price, % relative 19
35
Density, g/cm3 7.9
8.8
Embodied Carbon, kg CO2/kg material 3.9
3.8
Embodied Energy, MJ/kg 54
61
Embodied Water, L/kg 150
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 190
27
Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 820
170
Stiffness to Weight: Axial, points 14
6.8
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 21 to 32
11
Strength to Weight: Bending, points 20 to 26
13
Thermal Diffusivity, mm2/s 4.0
18
Thermal Shock Resistance, points 13 to 20
13

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 16.5 to 18.5
0
Copper (Cu), % 0
82 to 86
Iron (Fe), % 61.7 to 71
0 to 0.2
Lead (Pb), % 0
2.0 to 3.2
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 2.0 to 2.5
0
Nickel (Ni), % 10.5 to 13.5
2.8 to 4.0
Phosphorus (P), % 0 to 0.045
0 to 1.5
Silicon (Si), % 0 to 1.0
0 to 0.0050
Sulfur (S), % 0 to 0.015
0 to 0.050
Tin (Sn), % 0
9.0 to 11
Titanium (Ti), % 0 to 0.7
0
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.7