MakeItFrom.com
Menu (ESC)

EN 1.4571 Stainless Steel vs. S40920 Stainless Steel

Both EN 1.4571 stainless steel and S40920 stainless steel are iron alloys. They have 79% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.4571 stainless steel and the bottom bar is S40920 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190 to 270
150
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 14 to 40
22
Fatigue Strength, MPa 200 to 330
130
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 78
75
Shear Strength, MPa 410 to 550
270
Tensile Strength: Ultimate (UTS), MPa 600 to 900
430
Tensile Strength: Yield (Proof), MPa 230 to 570
190

Thermal Properties

Latent Heat of Fusion, J/g 290
270
Maximum Temperature: Corrosion, °C 480
450
Maximum Temperature: Mechanical, °C 950
710
Melting Completion (Liquidus), °C 1440
1450
Melting Onset (Solidus), °C 1400
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 15
26
Thermal Expansion, µm/m-K 17
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 19
6.5
Density, g/cm3 7.9
7.7
Embodied Carbon, kg CO2/kg material 3.9
2.0
Embodied Energy, MJ/kg 54
28
Embodied Water, L/kg 150
94

Common Calculations

PREN (Pitting Resistance) 25
11
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 190
78
Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 820
97
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 21 to 32
15
Strength to Weight: Bending, points 20 to 26
16
Thermal Diffusivity, mm2/s 4.0
6.9
Thermal Shock Resistance, points 13 to 20
15

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.030
Chromium (Cr), % 16.5 to 18.5
10.5 to 11.7
Iron (Fe), % 61.7 to 71
85.1 to 89.4
Manganese (Mn), % 0 to 2.0
0 to 1.0
Molybdenum (Mo), % 2.0 to 2.5
0
Nickel (Ni), % 10.5 to 13.5
0 to 0.5
Niobium (Nb), % 0
0 to 0.1
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.020
Titanium (Ti), % 0 to 0.7
0.15 to 0.5