MakeItFrom.com
Menu (ESC)

EN 1.4580 Stainless Steel vs. 511.0 Aluminum

EN 1.4580 stainless steel belongs to the iron alloys classification, while 511.0 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4580 stainless steel and the bottom bar is 511.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
50
Elastic (Young's, Tensile) Modulus, GPa 200
68
Elongation at Break, % 40
3.0
Fatigue Strength, MPa 210
55
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 78
25
Shear Strength, MPa 430
120
Tensile Strength: Ultimate (UTS), MPa 620
150
Tensile Strength: Yield (Proof), MPa 250
83

Thermal Properties

Latent Heat of Fusion, J/g 290
400
Maximum Temperature: Mechanical, °C 950
170
Melting Completion (Liquidus), °C 1450
640
Melting Onset (Solidus), °C 1400
590
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 15
140
Thermal Expansion, µm/m-K 16
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
36
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
120

Otherwise Unclassified Properties

Base Metal Price, % relative 22
9.5
Density, g/cm3 7.9
2.7
Embodied Carbon, kg CO2/kg material 4.3
8.8
Embodied Energy, MJ/kg 60
150
Embodied Water, L/kg 150
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
3.7
Resilience: Unit (Modulus of Resilience), kJ/m3 150
51
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
51
Strength to Weight: Axial, points 22
15
Strength to Weight: Bending, points 21
23
Thermal Diffusivity, mm2/s 4.0
59
Thermal Shock Resistance, points 14
6.5

Alloy Composition

Aluminum (Al), % 0
93.3 to 96.2
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 16.5 to 18.5
0
Copper (Cu), % 0
0 to 0.15
Iron (Fe), % 61.4 to 71
0 to 0.5
Magnesium (Mg), % 0
3.5 to 4.5
Manganese (Mn), % 0 to 2.0
0 to 0.35
Molybdenum (Mo), % 2.0 to 2.5
0
Nickel (Ni), % 10.5 to 13.5
0
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0.3 to 0.7
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 0.15
Residuals, % 0
0 to 0.15