MakeItFrom.com
Menu (ESC)

EN 1.4580 Stainless Steel vs. 6081 Aluminum

EN 1.4580 stainless steel belongs to the iron alloys classification, while 6081 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4580 stainless steel and the bottom bar is 6081 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
69
Elongation at Break, % 40
9.0
Fatigue Strength, MPa 210
110
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 78
26
Shear Strength, MPa 430
180
Tensile Strength: Ultimate (UTS), MPa 620
310
Tensile Strength: Yield (Proof), MPa 250
270

Thermal Properties

Latent Heat of Fusion, J/g 290
410
Maximum Temperature: Mechanical, °C 950
160
Melting Completion (Liquidus), °C 1450
640
Melting Onset (Solidus), °C 1400
610
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 15
180
Thermal Expansion, µm/m-K 16
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
47
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
160

Otherwise Unclassified Properties

Base Metal Price, % relative 22
9.5
Density, g/cm3 7.9
2.7
Embodied Carbon, kg CO2/kg material 4.3
8.3
Embodied Energy, MJ/kg 60
150
Embodied Water, L/kg 150
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
27
Resilience: Unit (Modulus of Resilience), kJ/m3 150
540
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 22
32
Strength to Weight: Bending, points 21
37
Thermal Diffusivity, mm2/s 4.0
74
Thermal Shock Resistance, points 14
14

Alloy Composition

Aluminum (Al), % 0
96.3 to 98.6
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 16.5 to 18.5
0 to 0.1
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 61.4 to 71
0 to 0.5
Magnesium (Mg), % 0
0.6 to 1.0
Manganese (Mn), % 0 to 2.0
0.1 to 0.45
Molybdenum (Mo), % 2.0 to 2.5
0
Nickel (Ni), % 10.5 to 13.5
0
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0.7 to 1.1
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15