MakeItFrom.com
Menu (ESC)

EN 1.4580 Stainless Steel vs. EN 1.0451 Steel

Both EN 1.4580 stainless steel and EN 1.0451 steel are iron alloys. They have 68% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.4580 stainless steel and the bottom bar is EN 1.0451 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
120
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 40
27
Fatigue Strength, MPa 210
180
Impact Strength: V-Notched Charpy, J 90
62
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 78
73
Shear Strength, MPa 430
270
Tensile Strength: Ultimate (UTS), MPa 620
420
Tensile Strength: Yield (Proof), MPa 250
240

Thermal Properties

Latent Heat of Fusion, J/g 290
250
Maximum Temperature: Mechanical, °C 950
400
Melting Completion (Liquidus), °C 1450
1460
Melting Onset (Solidus), °C 1400
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 15
49
Thermal Expansion, µm/m-K 16
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 22
2.1
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 4.3
1.5
Embodied Energy, MJ/kg 60
19
Embodied Water, L/kg 150
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
98
Resilience: Unit (Modulus of Resilience), kJ/m3 150
150
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 22
15
Strength to Weight: Bending, points 21
16
Thermal Diffusivity, mm2/s 4.0
13
Thermal Shock Resistance, points 14
13

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.060
Carbon (C), % 0 to 0.080
0 to 0.15
Chromium (Cr), % 16.5 to 18.5
0 to 0.3
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 61.4 to 71
97.2 to 99.58
Manganese (Mn), % 0 to 2.0
0.4 to 1.2
Molybdenum (Mo), % 2.0 to 2.5
0 to 0.080
Nickel (Ni), % 10.5 to 13.5
0 to 0.3
Niobium (Nb), % 0 to 1.0
0 to 0.010
Phosphorus (P), % 0 to 0.045
0 to 0.025
Silicon (Si), % 0 to 1.0
0 to 0.35
Sulfur (S), % 0 to 0.015
0 to 0.010
Titanium (Ti), % 0
0 to 0.040
Vanadium (V), % 0
0 to 0.020