MakeItFrom.com
Menu (ESC)

EN 1.4580 Stainless Steel vs. EN 1.0546 Steel

Both EN 1.4580 stainless steel and EN 1.0546 steel are iron alloys. They have 68% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.4580 stainless steel and the bottom bar is EN 1.0546 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
160
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 40
24
Fatigue Strength, MPa 210
260
Impact Strength: V-Notched Charpy, J 90
49
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 78
73
Shear Strength, MPa 430
350
Tensile Strength: Ultimate (UTS), MPa 620
550
Tensile Strength: Yield (Proof), MPa 250
360

Thermal Properties

Latent Heat of Fusion, J/g 290
250
Maximum Temperature: Mechanical, °C 950
400
Melting Completion (Liquidus), °C 1450
1460
Melting Onset (Solidus), °C 1400
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 15
45
Thermal Expansion, µm/m-K 16
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 22
2.5
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 4.3
1.7
Embodied Energy, MJ/kg 60
23
Embodied Water, L/kg 150
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
110
Resilience: Unit (Modulus of Resilience), kJ/m3 150
350
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 22
19
Strength to Weight: Bending, points 21
19
Thermal Diffusivity, mm2/s 4.0
12
Thermal Shock Resistance, points 14
17

Alloy Composition

Aluminum (Al), % 0
0 to 0.015
Carbon (C), % 0 to 0.080
0 to 0.2
Chromium (Cr), % 16.5 to 18.5
0 to 0.35
Copper (Cu), % 0
0 to 0.6
Iron (Fe), % 61.4 to 71
95.5 to 99.15
Manganese (Mn), % 0 to 2.0
0.85 to 1.8
Molybdenum (Mo), % 2.0 to 2.5
0 to 0.13
Nickel (Ni), % 10.5 to 13.5
0 to 0.55
Niobium (Nb), % 0 to 1.0
0 to 0.060
Nitrogen (N), % 0
0 to 0.017
Phosphorus (P), % 0 to 0.045
0 to 0.030
Silicon (Si), % 0 to 1.0
0 to 0.55
Sulfur (S), % 0 to 0.015
0 to 0.025
Titanium (Ti), % 0
0 to 0.060
Vanadium (V), % 0
0 to 0.14