MakeItFrom.com
Menu (ESC)

EN 1.4580 Stainless Steel vs. EN 1.4854 Stainless Steel

Both EN 1.4580 stainless steel and EN 1.4854 stainless steel are iron alloys. Both are furnished in the solution annealed (AT) condition. They have 68% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.4580 stainless steel and the bottom bar is EN 1.4854 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
180
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 40
45
Fatigue Strength, MPa 210
310
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 78
78
Shear Strength, MPa 430
520
Tensile Strength: Ultimate (UTS), MPa 620
750
Tensile Strength: Yield (Proof), MPa 250
340

Thermal Properties

Latent Heat of Fusion, J/g 290
330
Maximum Temperature: Corrosion, °C 480
450
Maximum Temperature: Mechanical, °C 950
1170
Melting Completion (Liquidus), °C 1450
1370
Melting Onset (Solidus), °C 1400
1330
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 15
11
Thermal Expansion, µm/m-K 16
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 22
34
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 4.3
5.7
Embodied Energy, MJ/kg 60
81
Embodied Water, L/kg 150
220

Common Calculations

PREN (Pitting Resistance) 25
28
Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
270
Resilience: Unit (Modulus of Resilience), kJ/m3 150
280
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 22
26
Strength to Weight: Bending, points 21
23
Thermal Diffusivity, mm2/s 4.0
2.9
Thermal Shock Resistance, points 14
18

Alloy Composition

Carbon (C), % 0 to 0.080
0.040 to 0.080
Cerium (Ce), % 0
0.030 to 0.080
Chromium (Cr), % 16.5 to 18.5
24 to 26
Iron (Fe), % 61.4 to 71
33.6 to 40.6
Manganese (Mn), % 0 to 2.0
0 to 2.0
Molybdenum (Mo), % 2.0 to 2.5
0
Nickel (Ni), % 10.5 to 13.5
34 to 36
Niobium (Nb), % 0 to 1.0
0
Nitrogen (N), % 0
0.12 to 0.2
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 1.0
1.2 to 2.0
Sulfur (S), % 0 to 0.015
0 to 0.015