MakeItFrom.com
Menu (ESC)

EN 1.4580 Stainless Steel vs. C64700 Bronze

EN 1.4580 stainless steel belongs to the iron alloys classification, while C64700 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4580 stainless steel and the bottom bar is C64700 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 40
9.0
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 78
44
Shear Strength, MPa 430
390
Tensile Strength: Ultimate (UTS), MPa 620
660
Tensile Strength: Yield (Proof), MPa 250
560

Thermal Properties

Latent Heat of Fusion, J/g 290
220
Maximum Temperature: Mechanical, °C 950
200
Melting Completion (Liquidus), °C 1450
1090
Melting Onset (Solidus), °C 1400
1030
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 15
210
Thermal Expansion, µm/m-K 16
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
38
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
38

Otherwise Unclassified Properties

Base Metal Price, % relative 22
31
Density, g/cm3 7.9
8.9
Embodied Carbon, kg CO2/kg material 4.3
2.7
Embodied Energy, MJ/kg 60
43
Embodied Water, L/kg 150
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
57
Resilience: Unit (Modulus of Resilience), kJ/m3 150
1370
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 22
21
Strength to Weight: Bending, points 21
19
Thermal Diffusivity, mm2/s 4.0
59
Thermal Shock Resistance, points 14
24

Alloy Composition

Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 16.5 to 18.5
0
Copper (Cu), % 0
95.8 to 98
Iron (Fe), % 61.4 to 71
0 to 0.1
Lead (Pb), % 0
0 to 0.1
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 2.0 to 2.5
0
Nickel (Ni), % 10.5 to 13.5
1.6 to 2.2
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0.4 to 0.8
Sulfur (S), % 0 to 0.015
0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.5