MakeItFrom.com
Menu (ESC)

EN 1.4580 Stainless Steel vs. C93400 Bronze

EN 1.4580 stainless steel belongs to the iron alloys classification, while C93400 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.4580 stainless steel and the bottom bar is C93400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 40
9.1
Poisson's Ratio 0.28
0.35
Shear Modulus, GPa 78
38
Tensile Strength: Ultimate (UTS), MPa 620
270
Tensile Strength: Yield (Proof), MPa 250
150

Thermal Properties

Latent Heat of Fusion, J/g 290
180
Maximum Temperature: Mechanical, °C 950
150
Melting Completion (Liquidus), °C 1450
950
Melting Onset (Solidus), °C 1400
850
Specific Heat Capacity, J/kg-K 470
350
Thermal Conductivity, W/m-K 15
58
Thermal Expansion, µm/m-K 16
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
12
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
12

Otherwise Unclassified Properties

Base Metal Price, % relative 22
32
Density, g/cm3 7.9
8.9
Embodied Carbon, kg CO2/kg material 4.3
3.3
Embodied Energy, MJ/kg 60
54
Embodied Water, L/kg 150
380

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
21
Resilience: Unit (Modulus of Resilience), kJ/m3 150
120
Stiffness to Weight: Axial, points 14
6.3
Stiffness to Weight: Bending, points 25
17
Strength to Weight: Axial, points 22
8.3
Strength to Weight: Bending, points 21
10
Thermal Diffusivity, mm2/s 4.0
18
Thermal Shock Resistance, points 14
10

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.5
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 16.5 to 18.5
0
Copper (Cu), % 0
82 to 85
Iron (Fe), % 61.4 to 71
0 to 0.2
Lead (Pb), % 0
7.0 to 9.0
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 2.0 to 2.5
0
Nickel (Ni), % 10.5 to 13.5
0 to 1.0
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.045
0 to 1.5
Silicon (Si), % 0 to 1.0
0 to 0.0050
Sulfur (S), % 0 to 0.015
0 to 0.080
Tin (Sn), % 0
7.0 to 9.0
Zinc (Zn), % 0
0 to 0.8
Residuals, % 0
0 to 1.0