MakeItFrom.com
Menu (ESC)

EN 1.4580 Stainless Steel vs. S41003 Stainless Steel

Both EN 1.4580 stainless steel and S41003 stainless steel are iron alloys. They have 80% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.4580 stainless steel and the bottom bar is S41003 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
200
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 40
21
Fatigue Strength, MPa 210
200
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 78
76
Shear Strength, MPa 430
320
Tensile Strength: Ultimate (UTS), MPa 620
520
Tensile Strength: Yield (Proof), MPa 250
310

Thermal Properties

Latent Heat of Fusion, J/g 290
270
Maximum Temperature: Corrosion, °C 480
390
Maximum Temperature: Mechanical, °C 950
720
Melting Completion (Liquidus), °C 1450
1440
Melting Onset (Solidus), °C 1400
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 15
27
Thermal Expansion, µm/m-K 16
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 22
7.0
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 4.3
1.9
Embodied Energy, MJ/kg 60
27
Embodied Water, L/kg 150
97

Common Calculations

PREN (Pitting Resistance) 25
12
Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
92
Resilience: Unit (Modulus of Resilience), kJ/m3 150
240
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 22
19
Strength to Weight: Bending, points 21
18
Thermal Diffusivity, mm2/s 4.0
7.2
Thermal Shock Resistance, points 14
19

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.030
Chromium (Cr), % 16.5 to 18.5
10.5 to 12.5
Iron (Fe), % 61.4 to 71
83.4 to 89.5
Manganese (Mn), % 0 to 2.0
0 to 1.5
Molybdenum (Mo), % 2.0 to 2.5
0
Nickel (Ni), % 10.5 to 13.5
0 to 1.5
Niobium (Nb), % 0 to 1.0
0
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.030