MakeItFrom.com
Menu (ESC)

EN 1.4581 Stainless Steel vs. EN 1.4736 Stainless Steel

Both EN 1.4581 stainless steel and EN 1.4736 stainless steel are iron alloys. They have 85% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.4581 stainless steel and the bottom bar is EN 1.4736 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
170
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 28
28
Fatigue Strength, MPa 150
230
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 78
76
Tensile Strength: Ultimate (UTS), MPa 510
580
Tensile Strength: Yield (Proof), MPa 210
310

Thermal Properties

Latent Heat of Fusion, J/g 300
290
Maximum Temperature: Corrosion, °C 490
500
Maximum Temperature: Mechanical, °C 990
1000
Melting Completion (Liquidus), °C 1440
1420
Melting Onset (Solidus), °C 1400
1380
Specific Heat Capacity, J/kg-K 470
490
Thermal Conductivity, W/m-K 15
21
Thermal Expansion, µm/m-K 16
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 21
9.0
Density, g/cm3 7.8
7.6
Embodied Carbon, kg CO2/kg material 4.2
2.4
Embodied Energy, MJ/kg 59
35
Embodied Water, L/kg 160
140

Common Calculations

PREN (Pitting Resistance) 26
18
Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
140
Resilience: Unit (Modulus of Resilience), kJ/m3 110
250
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 18
21
Strength to Weight: Bending, points 18
20
Thermal Diffusivity, mm2/s 3.9
5.6
Thermal Shock Resistance, points 12
21

Alloy Composition

Aluminum (Al), % 0
1.7 to 2.1
Carbon (C), % 0 to 0.070
0 to 0.040
Chromium (Cr), % 18 to 20
17 to 18
Iron (Fe), % 61.4 to 71
77 to 81.1
Manganese (Mn), % 0 to 1.5
0 to 1.0
Molybdenum (Mo), % 2.0 to 2.5
0
Nickel (Ni), % 9.0 to 12
0
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.5
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.015
Titanium (Ti), % 0
0.2 to 0.8